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The passive-homodyne method is very attractive for demodulating optical signals available at the output
of interferometric sensors by the use of coherence multiplexing. Phase measurement and the use of two
broadband sources with different central wavelengths permit a resolution of X/105 to be achieved with a
20-pim range-sensor optical path difference. However, dispersive birefringent elements are required in
this technique, which has some disturbing effects on the correlation signal position, on its envelope form,
and on the measured phase. An analytical treatment of the problem and a numerical validation are
described. Experimental evidence of the effects predicted by theory is presented.
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1. Introduction

Optical fiber sensors are useful in many industrial
applications in perturbed environments. In this con-
text the use of interferometric sensors based on the
so-called coherence multiplexing technique' is a suit-
able solution to the problem of the sensitivity to
source drifts or line-loss variations. With this
kind of technique a broadband light source is con-
nected by an optical fiber to an interferometric sensor
for which the optical path difference (OPD) is much
greater than the source coherence length and is
related to the parameter to be measured. After
going through a demodulation interferometer whose
OPD is close to the sensor OPD, the output light flux
is sent to a receiver (photodetector). Thus detection
in the Fourier space is used to recover the parameter.5
The signal provided by the receiver appears to be the
sum of a dc component and a sine term whose phase is
related to the parameter. The demodulation system
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described in this paper consists of two parallel inter-
ferometers in quadrature, each with two complemen-
tary outputs. The four signals (two per channel) are
then processed to calculate the phase of the sine
function. This configuration makes up the passive-
homodyne6 demodulator, and a two-wavelength mea-
surement is used to increase the range. With this
kind of method the interferometer used to demodu-
late the sensing interferometer must be as stable as
possible; therefore the two interferometers may have
different optical characteristics. Because of the use
of broadband light sources, which are typically light-
emitting diodes (LED's), effects on the measurement
from the spectral dependence of the optical properties
of the sensor and the demodulator are not negligible.
We analyze in this paper both the influence of the
chromatic dependence of the OPD in the interferom-
eters and the influence of the chromatic dispersion of
the quarter-wave retarder used in one channel of the
demodulator. In both cases we take an analytical
approach in describingthe effects. Anumerical simu-
lation is also used to predict the results obtained
experimentally.

2. Operating Principle

In a measurement device that uses coherence multi-
plexing, a LED is connected by optical fiber to an
interferometric sensor for which the OPD A, is much
greater than the source coherence length; A, is sup-
posed to be related to the parameterXto be measured.
The output light flux goes through a demodulation
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interferometer whose OPD Ad is close to A. The
signal S(X) provided by the photodetector is then
described by

Thus extraction of 4) from Eqs. (2.6) and (2.7)
together with complete knowledge of Ad permits the
determination of A, and then X.

S(X) = kkd Pt(o)T(u)[1 + u,(Aj)cos(2-rorA)]

x [1 + ud(Ad)cos(2rcTAd]dor, (2.1)

where is the wave number, k is a numerical
parameter equal to one half for a Michelson-type
sensor and one fourth for a birefringent type (unpolar-
ized incident light), kd is the same parameter as k, for
the demodulation interferometer, Pt(u) is the spectral
distribution of the transmitted light, T(r) is the
spectral transmission of the whole system, u(AJ is
the visibility of the interferometric sensor, ud(Ad) is
the visibility of the demodulation interferometer.

Ad is supposed to be constant, so, noting that

P(o) = kskdPt(ou)T(or),

U = Us(As)Ud)

we have

r ~1 
S(X) = f P(o)du + U P(cr)cos[2rro-(A - Ad)]du.

(2.2)

When the source is a LED, we can
symmetric function centered on uo.
phase to be measured, by

consider P(a-) a
Noting 4), the

4) = 2rruo[Aj(X) - Ad], (2.3)

I, the dc component that corresponds to the continu-
ous background, by

I = P(O),

and m(4)), the modulation amplitude, by

m(C) = I P(A - Ad),whee Px) s te csin trnfrIfteicdn

(2.4)

(2.5)

where P(x) is the cosine transform of the incident
light spectral distribution, i.e.,

P(x) = J P(u)cos(27rox)do,

we have

S(X) = I[ + m(4))cos 4)]. (2.6)

The use of a quarter-wavelength plate in the other
channel of the demodulator leads to another signal:

3. Demodulator Description

The passive-homodyne demodulation principle re-
quires a stable and reliable detection module. There-
fore the demodulator (Fig. 1) is chosen to provide four
signals: two complementary outputs of the polari-
metric interferometer:

So(X) = Io[, + mo(C)cos )],

S1(X) = I[1 - m()coS 4)], (3.1a)

and two additional outputs in quadrature with the
former expressions (owing to a im/2 retarder),

S2(X) = 12[1 + m2()sin 4)],

S3(X) = 13[1 - m3()sin 4]. (3.1b)

Note that in this paper we call the demodulator plate
the birefringent plate, which permits us to match the
OPD of the sensing interferometer in the demodula-
tor.

To recover the phase it is necessary to eliminate the
dc components Ii(i = 1, . . , 4) and the modulation
amplitude terms mi(i = 1, . . ., 4); therefore the de-
modulator system must be calibrated, and the follow-
ing two stages are carried out. The four signals are
analog to digital (A/D) converted and recorded on a
computer. At first the light is switched to bypass the
sensor, in which case Si = Ii(i = 1, .. , 4) and the
ratios ol = IolIl, il = Io/I2, and , = I0/1I3 can be
computed. Then the light is launched through a
calibration interferometer (typically a Michelson inter-
ferometer), and the terms

S8(X) = Y2S2 - eq3S3 = Im 2(4) + m3 (4))]sin 4,

SJ(X) = SO - OtSi = I[mO(C) + ml()]cos C}1
(3.2)

are computed.

5J

S2

PBS
FO: Fiber Optic
P: Photodiode
D: Achromatic Doublet
PBS: Polarizing Beam Splitter
BDP: Birefringent Demodulator Plate

S. R: 7/9 Retarder

S'(X) = I[1 + m(o)sin 4]. (2.7) Fig. 1. Demodulator scheme.
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The Michelson OPD is changed to record the
correlation peak so that we obtain the modulation
amplitudes of S8 and S,. Then the ratio

= o[mo(4) + mi())1 (3.3)
I0[M2(4) ± M34))]

is formed; does not depend on u and 4), and the
calibration is independent of the sensor used. When
the demodulator is connected to the sensor the
measured phase 4 )

M is

EM = tan-l S - cia3 ) (3.4)

Note:

(1) The calibration of the dc components, which
one can perform between two measurements by using
an optical switch, permits one to eliminate the effects
from the variations of the detector's sensitivity.
Such variations may be caused by thermal fluctua-
tions.

(2) The visibility of each of the four channels of
the demodulator is supposed to be constant, and 1 is
calibrated only at the factory.

(3) The term 4)
M is independent of the visibility

fluctuations of the sensing interferometer and of the
source power variations. Moreover the use of a
birefringent interferometer in the demodulator saves
critical adjustments.

limited dynamic range caused by the 2Tr ambiguity of
the single-wavelength phase measurement.8-10

4. Influence of Chromatic Dependence on the OPD

So far A, and Ad have been considered independent of
wave number ai. So far as A and Ad have been
considered independent of the wave number or, which
is true for A, in the case of Michelson-type interfero-
metric sensors; but in the general case we have
As(X) = A,(X, or) and Ad = Ad(o). The light flux goes
through the sensor and the different channels of the
demodulator. For the cosine channel the analytical
signal expression is

S(X) = j'P(r)d + U

x P(ci)cos 2,rrAr[A,(X, a) - Ad(ci)]dcr, (4.1)

which can be written as

S(X) = P(0) + 2 UI3'-

Considering the ai dependence of A, and Ad, we cannot
identify 13' with P(A - Ad). In the following sec-
tions we study how to compute I3' in some cases for
various C dependences of A.

Studying the sign of sin 4) permits removal of the Tr
ambiguity in the value of E)

M given in Eq. (3.4).
In this case we have

4)
M = 2oA(X) (3.5)

with

A(X) = As(X) - Ad- (3.6)

By using a dual-wavelength source arrangement,
we can measure two phases, 4)

M1 and 4
M2, with

2Tr
4)

M1 = A(A - Ad) -2Pl,

2iT
4 )M2 = - (A. - Ad) -

2 P2 rr, (3.7)
X2

where Pi and P2 are two integers. The differential
phase A4) = 

4 ) M1 - 4 )
M2 measurement at the synthetic

wavelength

A
X1 X2

permits us to obtain p1 and to solve the problem of the

A. Analytical Calculation

To compute S(X), a complete knowledge of the func-
tions A,(X, (X), Ad(ci) is needed, and the existence of the
integral 13' is assumed. However, it is possible, with
certain assumptions on the linearization of A, and Ad
with respect to or, to continue the development in
specific cases.

Assumption 1: The continuous background is cali-
brated.

Assumption 2: In the useful spectral domain the
visibility of the interferometers is constant and equal
to one.

Assumption 3: The source power spectral density
is symmetric around the central emission wave num-
ber. In the case of LED's assumption 2 is realistic.

Assumption 4: The spectral response of the photo-
detector is constant over the spectral bandwidth of
the source. This assumption simplifies the analyti-
cal treatment and is a good approximation in the case
of LED's. (The case of a nonsymmetric source has
been studied, and for the typical emission spectra of
LED's commonly used, the results are very close to
those described in the following sections.)

Assumption 5: The phase between the cosine
channel and sine channel is constant and equal to Tr/2
over the whole spectral range of the source.
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With these five assumptions the recorded signals
for the sine channel S, and the cosine channel Sc are

Ss = 1(so -l Si),

S = Im P(c)exp[2irrciA(X, oa)]dci }

S = 2 (S2 - I S3),

Sc = Re{| P(ci)exp[2irrciA(X, c)]di}.

We take

4(ci) = 2,mc[A 8(X, a) - Ad(ci)]-

A Taylor expansion around ci is

4)(ci) = 4)(cio) + (r -°TO) )
+ (ci - go) 2 (a2 + (4.4)

Now we examine the influence of the different terms
of +(Cr) on the computation of the S8 and Sc integrals.

1. First Order
In this case phase 4) is simply linearized, so, taking

AO(X) = As(X, Co) - Ad(ci0), (4.5)

we obtain

4) = 2T[cOAO + ( - co)A] = 4)O + 2,rrA(ci - u0 ) (4.6)

with

A(X) = -A(X, r)] = AO(X) + c±[a Xci]a

(4.7)

We easily obtain analytical signal expressions for
signals Ss and SC:

S(X) = P(A)sin(27ruOA0),

S,(X) = P(A)cos(27roOO). (4.8)

Thus in this case we have ( )
M = 4)O. When the phase

dependence on ci is linear, the measured phase is the
same as if 4) were independent of ci. However, Eqs.
(4.8) show two effects on the modulation envelope of
the sine and cosine channels."'

First Effect: The envelope peak is given for A = 0,
i.e.,

A0(X) + 0 LoaA(X, )] = 0,

and the point where the phase is equal to zero is
(4.2a) obtained for A0(X) = 0. Therefore a shift appears

between the signal envelope and the modulation.
In the case of large shifts, to stay within the modula-
tion envelope, the measurement must be effected at
I A0 I >> 0, which induces a stronger sensitivity of the
system to source central wavelength variations.

Second Effect: A(X) is not equal to AX).
(4.2b) Therefore the modulation envelope given by P(A)

does not show the same half-height width as in the
case of 4) constant over the whole source emission
spectrum. Assuming that the latter half-height

(43) width does not decrease too much, this effect is not
really a problem.

2. Second Order
The expansion of Eq. (4.4) is performed to second
order, i.e.,

- = + 2rA( - oro) + 2rB (ac- °) '4)-4)o2 ~rrki-cio+ 2 'rr 2 (4.9)

with A(X) given by Eq. (4.7) and

B(X) = cA(X, c o) (4.10)

In this case we must compute the following integral:

I= fP(i)

x expi4o + 2A(c - 0 ) + 2rB (c2 c du0 .

(4.11)

The sources used in the device are LED's with known
characteristics (central wave number, emission power
PT, and spectral bandwidth related to A). The
function P(c) is also known a priori. We take

P(c) = A exp(-[(i - ci)/Aci]2} (4.12)

After some developments we obtain

I PTre[
1/4, xp

(_'rA\ 2]A 2~)

x exp i(< - R + - arctan 0)1, (4.13)
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with

R = ( + (rB)2,

0 = inB(Ac)
2 .

We see that in this case the measured phase 4 )
M is not

equal to 4)o.
Equation (4.13) shows that when the phase has a

quadratic dependence with ci, the measured phase (M
is not equal to 4)o and the difference depends on the
spectral width of the source, on the spectral depen-
dence of the OPD's A, and Ad, and therefore on the
parameter Xto be measured. The replacement of 4 M
by 4)o leads to an error that reduces without data
processing the system accuracy.

3. nth Order
When the expression of 4) is performed to an order
higher than 2, the analytical computation complexity
of S, and S, dramatically increases. Moreover the
spectral dependence of the birefringence of most
crystals can be indefinitely expanded in ci around a
wave number co, so that the presentation of each case
is irrelevant. To predict the experimental results,
we prefer a numerical simulation.

tions An, and And are either taken from tables (calcite
from Ref. 12, potassium dihydrogen phosphate (KDP)
from Ref. 13) or given by a formula [quartz from Ref.
14, lithium niobate (LiNbO 3 ) from Ref. 13].

Because of the infinitesimal effects that we want to
display and the importance of high resolution on the
phase to be measured, the numerical computation
requires high precision. For S, and S, an oscillating
function is integrated on the bound interval where
the spectral power density function is not negligible.
An efficient method for this computation is the
30-point G-61-point Kronrod method that gives in
this case 10-12 relative precision.

C. Validation of the Numerical Simulation

To test the numerical computation, we can compare
the difference 4)M - 4)0 obtained with the simulation
and the difference 4)M - 4)o given by the analytical
computation for the same setup configuration and
the same parameter X scale. Here we consider two
configurations:

(1) A Michelson-type sensor coupled with a polari-
metric demodulator. Here the parameter to be mea-
sured is the interferometer arm-length difference L.
So in this case

B. Numerical Simulation

The numerical simulation consists of computing S(X)
and S(X) with the help of a computer, which is
possible if all the functions inside the integrals ex-
pressed by Eqs. (4.2) are analytically known. Then
we obtain the measured phase 4)M for each value of X.
In a first attempt we can use the preceding analytical
approach to check and validate the results provided
by the numerical simulation; then this simulation
allows us to quantify in a rigorous way the effects
from the spectral dependence of the birefringent
materials used in the sensing and demodulation
systems.

The analytical expression for P(ci) is given in Eq.
(4.12). For a Michelson-type sensor

A,(X, ) = A,(X) = 2L, (4.14)

where L is the difference between the interferometer
arms. For a birefringent-type sensor

A,(X, C) = eAn,(T8 , X), (4.15)

where T, is the sensor crystal temperature, e is its
thickness when used in the transmission mode, and
An, is its birefringence. In the same way for a
demodulator with polarimetric interference

Ad(ci) = EAnd(Td, a), (4.16)

where Td is the demodulator plate temperature, E is
the thickness, and And is the birefringence. Func-

4) = 2'nru[2L - EAnd(Td, C)] = 2'rrcA(L, C). (4.17)

(2) A birefringent sensor coupled with the same
demodulator. In this case the parameter to be mea-
sured is the crystal temperature used in the sensor T8.
So in this case

4 = 2,rcr[eAn,(T, ci) - EAnd(Td, oi)] = 2TrciA(T8, or).

(4.18)

We first study the case in which 4) is linearized in c.

Theoretically the expressions for the recorded signals
are given by Eqs. (4.8). TheX scale is chosen to have
m(+) >> 0. Thus in this range

P(A) 0. (4.19)

Denoting Xm and Xs as the extremal values means
that IA(Xm) I << 4, and IA(Xs) I << 4,, where l repre-

sents the source coherence length. For both cases
the analytical development gives 4) M = 4)o for Xm <
Xi < Xs. The first computed results were obtained
for each value Xi of X in the scale domain. Figure 2
shows the difference 4)0(X) - 4)M(Xi) from the approxi-
mate phase 4)O(Xj) for the two sensor types with oro =
1.189 pLml, Aci = 72 x 10-3 jtm-', and E = e = 25
mm. T (0, 1000C) for the birefringent sensor, and
L E (115, 121 pLm) for the Michelson-type sensor.
In both cases Td = 20 C. To simulate a possible real
case the birefringence functions An8(T, ), And(T, or)
are chosen for the best quartz characteristic approxi-
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Fig. 2. Influence of the chromatic dispersion of the OPD on the measured phase. Comparison between the analytical approach and the
numerical computation for first-order expansion: (a) Michelson-type sensor, (b) birefringent sensor.

mation (birefringence Anq) So

An 8(T, uo) = Anq(T, co),

And(T, co) = Anq(T cro),

[ a 1 [a

-An,(T,cir) = - Anq(T, U)

(4.20)

(4.21) with, in addition,

[Ans(T, C)] = a 2 Anq(T, ci)]

a 2

(- And(T, ci) -

aur2 a Lar2 Anq(T, ci)]

A And(T, (r) I Anq(T, )I=o (4.21)

For both cases there is perfect agreement between the
analytical calculation and the numerical simulation.
The difference 4)M - 4)o is quasi-null on the parameter
range (as high as the computational precision).

Now we study the second-order expansion case.
In this case 4) is given by Eq. (4.9). Figure 3 shows
the same kind of result as in Fig. 2 but for a
second-order expansion. The demodulation crystal
characteristics are those given by Eqs. (4.20) and

ea 0.3

3) I -I

t0. 61~~~~~~~~~A-YI 21121 150E

(8

++++ 3.A.BVCAL Id

N.J,(R)CALn( -.hCFE

2
(8

<02

61 91 ~~~~~121 15C

Approximate hase (rad)
(a)

Fig. 3. Influence of the chromatic dispersion of the OPD on tb

Here again good agreement is found between the
analytical result and the numerical simulation.
Moreover we can see that in both cases the results
with the second-order expansion are close to those
obtained for the complete expansion (nth order),
which means that in the two preceding configurations
the second-order expansion is sufficient to describe
the effects of chromatic dispersion on the phase
linearity.

Note that in Fig. 3(b) the particular point Mo(4)O, 0)
belongs to all lines. At this point both temperatures
in the sensor and the demodulator are equal:

' 0.2 -
0 _

-a
(8

.2

E

e-0.719
O 19 -11 -3 4

Approximate phase (rad)
(b)

,e measured phase. Comparison among the analytical approach, the
numerical computation for second-order expansion, and the numerical computation for nth-order expansion: (a) Michelson-type sensor,
(b) birefringent sensor.
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A(T8 = Td) = B(T = Td) = 0 and (T = Td, or) = o=
0 and at MO, 4) M = T)o.

In light of these results for all configurations the
difference 4 )M - 4)o appears to be clearly a result of the
nonlinear C dependence of phase 4).

D. Real Operating Prevision

Assuming that analytical expressions for the func-
tions in Eqs. (4.2) are sufficiently good approxima-
tions, one can use a numerical simulation to choose
the system dimension. For example, one evaluates
the spectral dependence influence of the system crys-
tal birefringence on the measured phase linearity.
Figure 4 shows the computed differential phase A4)
function of the sensor OPD for a Michelson-type
sensor and a quartz demodulator plate (E = 25 mm)
and with the two sources such as ci1 = 1.189 j.m-1,
Ac1 = 72.10-3 Am-1, ci2 = 1.17 Fm-', Ac2 = 64 x 10-3
pm-1. There is a strong nonlinearity for each source.
Because of this phenomenon the use of A4) to obtain
the interferometer order can lead to errors in pi and
errors in the measurement. To avoid this problem,
it is necessary either to perform a numerical correc-
tion on the measured phase or to choose a well-
adapted spectral configuration.

1. Research of the Optimal Configuration
We know that the difference between 4 )M and 4)o is due
to the second- or superior-order term in the expan-
sion of 4) in C around (io. To reduce this problem, a
solution consists in using in the demodulator a
crystal whose birefringence shows the same chro-
matic dispersion as the one of the sensor. We saw in
Subsection 4.A.2 that the difference 4)o - 4 )M depends
strongly on the quadratic term in the expansion of 4).
The parameter B' with

Table 1. Spectral Characteristics of Some Birefringent Crystals

Crystals B'(Lm 2 )(Uo = 1.189 pm')

Quartz 9.02 x 10-2
LiNbO 3 2.18 x 10-1
Calcite 6.83 x 10-2
KDP 4.05 x 10-1

quartz, LiNbO3, calcite, and KDP. The best crystal
for spectral performances for our study is that whose
value of B' is the smallest. In this case the best
choice is calcite.

For a birefringent sensor, to reduce the spectral
dependence of 4), it is convenient to use in the
demodulator the same crystal as in the sensor. So
Eq. (4.18) becomes

4) = 27rcie[An,(T 8 , ci) - And(Td, a)].

However, a residual spectral dependence persists
because of the temperature difference T - Td be-
tween the sensor and the demodulator. It is conve-
nient to fix the demodulator temperature Td equal to
the average value of the sensor temperature range.

For a Michelson-type sensor Eq. (4.17) gives the
phase expression. For the usual birefringent crys-
tals this condition cannot be realized. However, a
good approximation is obtained when one uses differ-
ent birefringent crystal associations and adjusts their
respective thicknesses correctly. According to Sub-
section 4.A, to reduce 4 )

M - 4)o we need

a 2 4 )
= 0. (4.24)

In this case Eq. (4.24) is equivalent to
B' =- - An(T, ci), (4.23)

characterizes the second-order spectral performance
of a crystal whose birefringence is An and whose
temperature is T. Table 1 shows the values of B' for

- 1.40
228 236

Sensor OPD (m)

Fig. 4. Influence of the chromatic dispersion of the OPD on the
differential phase linearity. Quartz demodulator plate.

2'

(a 2 ucAnd

a2 c=a
= 0. (4.25)

Here we consider only the association of two birefrin-
gent crystals. We denote e1, e2 as their thicknesses
and An,, An2 as their birefringences. When we take

[a2cAni

\ dr2|
K - (c O

(a2ciAn2\

\aci 2 /

Eq. (4.24) becomes

el + EKe2 = 0,

(4.26)

(4.27)

with = +1 or e = -1 if the optical axes of the
crystals are aligned or crossed, respectively. The

44 composite crystal plate birefringence And is then

An, - KAn2
And- 1-sK (4.28)
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For technological reasons we prefer K = 1 (e1 e 2 ).
These considerations lead to a composite calcite/KDP
crystal plate with K = -3.622 ( = + is for the
aligned optical axes). Figure 5 is obtained with the
numerical simulation; it shows the difference be-
tween 4 )M and 4o as a function of 4)o for a Michelson-
type sensor both for a composite calcite/KDP demodu-
lator plate (K = -3.622, E = 3.013 mm) and for a
quartz demodulator plate (E = 25 mm) with a source
such that c 0 = 1.189 pim-l and Aci = 72 x 10-3 p 1 -l.
The right-hand scale corresponds to the dashed curve.
Note that the use of a composite plate permits a
significant reduction in the difference between 4 ) M
and 4)O. Figure 6 shows the same results as in Fig. 4
for a composite calcite/KDP demodulator plate.
The linearity of the differential phase increases as
expected.

However, in a practical technological realization, to
avoid the use of temperature stabilization, the de-
modulator must introduce a stable OPD with respect
to Td. Then

( arAnd\

AT -0,Td

= 0. (4.29)

This condition leads to the use of a composite
calcite/KDP birefringent plate with K = 0.982
(e = -1).'5 For such a plate we describe in Fig. 7
AM - )o as a function of 4)o; we note that in this case
this difference is comparable with that of a quartz
demodulator plate. The choice of the crystal demodula-
tor plate results from a compromise between the spectral
performance and sensitivity of Ad to the temperature.

5. Influence of the Chromatic Dispersion of the ./2
Retarder
In the demodulator presented the sine channel is
obtained by addition of a Ir/2 retarder with respect to
the cosine channel. So far we have supposed that
the retardation was equal to 7r/2 over the whole
source emitted spectrum. However, the use of broad-
band sources makes this condition difficult to realize,
which has disturbing effects on the differential phase.

0.95

-f 0.00

-0.95 ,
228 236 244

Sensor OPD (m)

Fig. 6. Influence of the OPD chromatic dispersion on the differen-
tial phase linearity. Calcite/KDP (K = -3622).

A. Analytical Calculation

We will develop an analytical approach with assump-
tions 1-4 of Subsection 4.A plus assumption 5; the
two OPD's A, and Ad are not ci dependent.

After calibration the formed cosine signal expres-
sion is

S,(X) = P(A, - Ad)cos[2TrcO(As - Ad)]- (5.1)

We denote AL(C) as the OPD introduced by the
retarder of the sine channel. Thus the correspond-
ing phase XL is

4L(c) = 2ImoAL(ci), (5.2)

and the sine signal expression is

S(X) = f P(ci)cos 2rruc[A5(X) - Ad - AL(i)]dc. (5.3)

1. Constant Retardation
If, for example, L(ci) is such that L(c) = rr/2, which
corresponds to the ideal case of an achromatic re-
tarder, we have

S(X) = P(A, - Ad)sin 2Tcio(A, - Ad)

0.30
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0.00

-0.15 -
230 236

Sensor OPD rim)
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242
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a
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IN o0

I C a5a In

-a09

0E

x
QL

Fig. 5. Phase linearity for a quartz demodulator plate and a
composite calcite/KDP (K -3622) demodulator plate.
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-0.57
230 236
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Fig. 7. Phase linearity for an athermal demodulator plate.
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and 4) M = 4)o. In this case the measured phase is
equal to the approximate one.

2. Linear oa-Dependent Retardation
If L is not constant over the entire emitted spec-
trum, the integral expressed by Eq. (5.3) has no
simple analytical solution. We write the equation as

B. Validation of the Numerical Simulation

As in Subsection 4.B, to validate the numerical
results we compare them to analytical results in some
simple cases. Here A = A(X) and Ad = Ad(Td).
Figure 8 shows a comparison between the analytical
and the numerical results for AL(ci) = 1/4o with oro c
(ci, + 2)/2; in this case

1

L(c) = + ( -co) -. (5.11)
4L(ci) = + 2iTA(ci - cio),

where A is as given in Eq. (4.7). Noting that

AL' = (au c0)1

we obtain

Ss(X) = P(As- Ad -AL')sin[2rrc0(A, - Ad)],

= tan~ L P(A- Ad - A' 
P(AS, - Ad)ta

(5.4)

Then 4)M e 4)o. There is a shift between the sine
modulation envelope and the cosine one. The re-
placement of 4) M by 4)o leads to a systematic error,
depending on the parameter to be measured. This
phenomenon has a dramatic effect on the order Pi
determination. Therefore we will study differential
phase A4).

We denote c and ci2, the two central source wave
numbers; Ac, and Aoi2 their half-height widths; and
PT1 and PT2, their total emitted powers. Thus

Pl(a) = Ai ,PI exp{-[(c - i)/Aci,]2 },

PT1 ]1
P2(ci) = y - exp -[(i - 2)/AOi2]2 }-

Noting that

4)1 = 2ircrA,

42 = 2-rri 2A,

we write the expression for the measured differential
phase A4)M as

ADM = tan-' exp{-[mAuc2(A - AL')]2) tan 4)2
exp[-(7TAi 2 A)2 ]

- tan-(
Iexp{-[ [irAi,(A - AL')] 2)

exp[-(TWrciA)2 ]

For two sources such as c = 1.189 pLm-1 , Ac, = 72 x
10-3, m-1; ci2 = 1.17 pm-1, Air2 = 64 X 10-3 Am-l,
and a Michelson-type sensor with a quartz demodula-
tor plate (E = 25 mm), we see perfect agreement
between analytical and numerical results. Without
more complicated data processing the nonmonotony
of the differential phase can produce fatal errors for
the pl-order determination. For a real operating
system and for an acceptable differential phase-error
determination, a numerical simulation can also be
used to choose characteristic parameters of the sys-
tem (the range, coherence length of the sources,
birefringent materials, retarders, etc.). However, to
eliminate this drawback, it is possible to take some
achromatic or quasi-achromatic retarders currently
used in optics:

The Fresnel rhomb is strongly achromatic, but for
a wr/2 retarder configuration the optic ray is shifted.
Moreover a setup of this kind of retarder requires
high precision.

Composite retardation plates are made up of two or
more birefringent elements. These retarders are
partially achromatic but their setup is easy. 16

Figure 9 shows computed differential phases for
three retarders. The nonlinearity of A4) increases
with the chromatic dispersion of the retarder.

(5.8) 6. Experimental Evidence of the Theoretical Effects

The experimental setup is shown in Fig. 10. The
fluxes emitted by the two sources (, = 1.189 Lm-',

(5.9)

1.68

T

4
-6

tan ))

(5.10)

and A4)M • 4)2 - 4)1. So, in the case of a linear C
dependence of 4), it is possible to compute A4M
analytically. For a more complete expansion of 4) in
ca, a numerical simulation is required.

1.18

0.67 -
4.53 7.51 10.50

Sensor OPD (m)

Fig. 8. Influence of the chromatic dispersion of the retarder on
the differential phase linearity. Comparison between the analyti-
cal approach and numerical computation.
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Fig. 9. Influence of the chromatic dispersion of some retarders:
retarders are used in the sine channel.

Aci, = 72 X 10-3 Pm-l; ci 2 = 1.17 pm-l, Ac2 = 64 x
10-3 Pim ') are sent by multimode optical fiber and
then go through the sensor and the demodulator.
The demodulator optical outputs are sent to photode-
tectors through four optical fibers to make the setting
of the various elements during the experiment easier.
(This configuration is not recommended because it
makes the system sensitive to line-loss variations.)
The eight available signals (four channels, two sources)
are 16 bit digitized, recorded on a computer, and
processed with the data calculated during the calibra-
tion. Thus we can compute information related to
the sensor (the phase, the differential phase, the
parameter to measure). The computer also drives
through a digital-to-analog (D/A) conversion card, a
piezoelectric displacement integral with one of the
Michelson arms. Thus the sensor OPD can be
changed easily. In Subsections 6.A-6.C the ir/2
retarder is a Fresnel rhomb.

Preliminary Note: In the present case the use of a
chromatic demodulator crystal plate induces a differ-
ence between 4)1 and 4)2. With the linear approxima-
tion we have

4)1 = 4)o + 2irA(ci, - co),

42 = To + 2A(c 2 - 0 ),

where A is as in Eq. (4.7). Then

AX = 27(a - 2)A(00) + Q. (I

3 dB cupler I I COWL=U

HIELECTONIC

Fig. 10. Experimental setup.

a

46

246242 244

Sensor OPD (m)
(b)

(a) phase retardations, (b) corresponding differential phases when the

with

f= 2r((r - ci2A. (6.3)

Introducing the term fl in the orderp, calculation, we
can compute 4)1 and then A, with

A, = 27 + Ad(cri)-
2rou,

(6.4)

A. Shift Effect

From the analytical results the shift between the
correlation signal envelope and the point where 4) is
equal to zero is obtained with Eq. (4.13). For a
quartz demodulator plate with thickness E = 25 mm
the shift corresponds to a Michelson OPD d, = 12.4
Pum. Figure 11 shows the recorded correlation peak
for a voltage ramp on the piezoelectric stack and the
corresponding measured OPD. The shift experimen-
tally obtained is de 12.6 jum (1 V corresponds
approximately to an OPD variation of 8.4 nm).

(6.1)

6.2) 0
0
0
E
+

11
U)

5000

2500

C

20

5 0
Q.
0

)O I I I '-10

0 500 1000 1500 2000

Plezo. voltage (Volts)

Fig. 11. Experimental evidence of the shift effect. Solid curve,
correlation peak; dashed curve, corresponding measured phase.
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Fig. 12. Experimental evidence of the broadening effect:

B. Broadening Effect

According to Section 2, signal S at the output of a
photodetector placed at the output of a Michelson
interferometer with A, << l is given by

S = P(O) + U(A)-. (6.5)

For a Gaussian source shape described by Eq. (4.12)
the width for a 3/4 amplitude of the signal envelope,
which is not affected by the broadening effect de-
scribed in Subsection 4.A is obtained for a Michelson
OPD variation 2AL3/4 such as

2AL = 2 [-ln(3/4)]'/ 2 (6.6)

For a second-order approximation (Subsection 4.A.2),
when the Michelson interferometer is coupled to a
birefringent demodulation interferometer, the signal
given by a photodetector is obtained by Eq. (4.13) and
has a location-dependent width17:

2AL = 2Aci [-ln(3/4)]/ 2 FR. (6.7)
3/4 ~~~IT

0.30

0.05

-0.21 `

230 242236

Sensor OPD (rm)
(a)

Piezo. voltage (Volts)
(b)

(a) recorded central peak, (b) recorded correlation peak.

Figure 12 was obtained for a Michelson interferom-
eter coupled to a birefringent quartz interferometer
with E = 25 mm and Td = 20 'C. The envelope is
clearly broadened in Fig. 12(b), which shows the
secondary peak, compared with Fig. 12(a), which
shows the central peak. In this case we measure
2AL3 /4 9 m when Eq. (6.7) gives 2AL3 / 4 =
9.15 p.m.

C. Difference between the Approximate Phase and
Measured Phase
We know that the birefringence spectral dependence
introduces a difference between the measured phase
and the approximate phase. Figure 13 shows the
comparison between 4 )M - )o experimentally mea-
sured and numerically simulated for two demodula-
tor plates in quartz (E = 25 mm) and in LiNbO3
(E = 3.16 mm).

D. Nonlinearity of the Differential Phase

Figure 14 shows a comparison between the computed
differential phase and the measured one for a quarter-
wavelength plate in quartz and a demodulator plate
in quartz (E = 24 mm).

a
5)-aa
0.-a

M

a)

.E
0X
a

0.95

0.22

-0.50 L-

292 300 308

Sensor OPD (rm)
(b)

Fig. 13. Experimental evidence of the influence of the chromatic dispersion of the OPD on the measured phase: (a) demodulator plate in
quartz, (b) demodulator plate in LiNbO3.
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Fig. 14. Experimental evidence of the influence of the chromatic
dispersion of the retarder on the differential phase linearity.

7. Practical Realizations

All the preceding considerations have led to the
development of the ACCORD system,'8 which has
been used to demodulate temperature and pressure
sensors for down-hole applications' 9 and for
OSTIC/OSMOS strain sensors described by Sanson-
etti et al.20 Figure 15 shows an experimental tem-
perature sensor calibration with chromatic OPD ef-
fects totally neglected; it also shows that the
temperature measurement improves when the de-
modulator plate and the sine channel retarder are
strongly achromatic.

Note: For industrial applications it is necessary to
consider the fact that the spectral envelope of LED's
varies as a function of device temperature and device
age. Because of the calibration of the dc components
described in Secion 3, the change in this parameter
does not influence the phase measurement. The
half-height-width variations lead to second-order ef-
fects on the phase measurement and influence only
the linearity of the phase. The central wavelength
fluctuations dramatically influence the measure-
ment, so for industrial applications the LED's are

124

0

70

16
0 25

TIME (minutes)

Fig. 15. Influence of the correction of the chromatic OPD effects
on the measurement. Solid curve, quartz demodulator plate and
mica retarder in the sine channel; dashed curve, demodulator plate
and sine channel retarder strongly achromatic.

cooled. The use of an interferometric filter to select
a stable spectrum is another solution to the problem
of X0 variations, because for this kind of device
(aXO)/aT = 0.03 nm/C is 1 order of magnitude less
than for LED's.

8. Conclusion

The effects of the chromatic dispersion of both OPD
and 1r/2 retardation in a dual interferometer measure-
ment device have been analyzed. Good agreement
among analytical calculation, numerical simulation,
and experimental results has been found, which
enables us to choose the best configuration of the
system for a given performance in terms of phase
resolution. Using the analytical results, one finds
that it is also possible to utilize more precise data
processing than that described in Section 2 to recover
the correct value of the parameter to be measured.
These considerations have led to the development of
the ACCORD system. This detection unit gives a
rms phase-noise performance of better than 150 gLrad
(Hz)-1/2 and an accuracy of 1 mrad over a 407 phase
range.17 Moreover it has been shown that actually
the rms noise is mainly a result of the binary modula-
tion of the sources. With a sine amplitude modula-
tion it has been shown that the rms noise perfor-
mance should be better than 10 g.rad (Hz)-1/2. This
performance can be compared with that of hetero-
dyne interferometers but with a broadband light
source.
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